Answer
$$\sqrt[3]{\frac{3 }{2 }}$$
Work Step by Step
Given $$\lim _{s \rightarrow \infty}\sqrt[3]{\frac{3s^7-4s^5}{2s^7+1 }}$$
Then
\begin{align*}
\lim _{s \rightarrow \infty}\sqrt[3]{\frac{3s^7-4s^5}{2s^7+1 }}&=\lim _{s \rightarrow \infty}\sqrt[3]{\frac{3s^7/s^7-4s^5/s^7}{2s^7/s^7+1/s^7 }}\\
&=\lim _{s \rightarrow \infty}\sqrt[3]{\frac{3 -4 /s^2}{2 +1/s^7 }}\\
&=\sqrt[3]{\frac{3 }{2 }}
\end{align*}