College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 53

Answer

$\frac{x(x-1)}{(x+5)(x-2)(x+3)}; x \ne -5,2,-3;$

Work Step by Step

$\frac{3x}{x^{2}+3x-10} - \frac{2x}{x^{2}+x-6} $ Factorizing the denominator, $=\frac{3x}{(x+5)(x-2)} - \frac{2x}{(x+3)(x-2)}; x \ne -5,2,-3;$ Taking Least Common Denominator, we get $=\frac{3x(x+3)-2x(x+5)}{(x+5)(x-2)(x+3)}; x \ne -5,2,-3;$ $=\frac{3x^{2}+9x-2x^{2}-10x}{(x+5)(x-2)(x+3)}; x \ne -5,2,-3;$ Combine like terms. $=\frac{x^{2}-x}{(x+5)(x-2)(x+3)}; x \ne -5,2,-3;$ $=\frac{x(x-1)}{(x+5)(x-2)(x+3)}; x \ne -5,2,-3;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.