College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 73

Answer

$\frac{x^{2}+5x+8}{(x+1)(x+2)}; x \ne -1,-2,-\frac{3}{2};$

Work Step by Step

$ (\frac{2x+3}{x+1} . \frac{x^{2}+4x-5}{2x^{2}+x-3}) - \frac{2}{x+2}$ Factors of $x^{2}+4x-5$ are $(x-1)(x+5)$ and factors of $2x^{2}+x-3$ are $(x-1)(2x+3)$ $ =(\frac{2x+3}{x+1} . \frac{(x-1)(x+5)}{(x-1)(2x+3)}) - \frac{2}{x+2}; x \ne -1,-2,-\frac{3}{2};$ Cross out common factors. $ =\frac{x+5}{x+1} - \frac{2}{x+2}; x \ne -1,-2,-\frac{3}{2};$ Taking LCD, $ =\frac{(x+5)(x+2) - 2(x+1)}{(x+1)(x+2)} ; x \ne -1,-2,-\frac{3}{2};$ $ =\frac{x^{2}+5x+2x+10 - 2(x+1)}{(x+1)(x+2)} ; x \ne -1,-2,-\frac{3}{2};$ $ =\frac{x^{2}+5x+2x+10 - 2x-2}{(x+1)(x+2)} ; x \ne -1,-2,-\frac{3}{2};$ $ =\frac{x^{2}+5x+8 }{(x+1)(x+2)} ; x \ne -1,-2,-\frac{3}{2};$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.