Answer
$\frac{1}{y(y+5)}; y \ne 0,-5;$
Work Step by Step
$\frac{y^{-1}- (y+5)^{-1}}{5}$
The given expression can be written as
$=\frac{\frac{1}{y}- \frac{1}{y+5}}{5}; y \ne 0,-5;$
Take LCD in the numerator
$=\frac{\frac{y+5-y}{y(y+5)}}{5}; y \ne 0,-5;$
$=\frac{\frac{5}{y(y+5)}}{5}; y \ne 0,-5;$
$ =\frac{5}{y(y+5)} \times \frac{1}{5}; y \ne 0,-5;$
$= \frac{1}{y(y+5)}; y \ne 0,-5;$