College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 57

Answer

$\frac{(x-1)}{(x+2)}; x \ne -1,-2;$

Work Step by Step

$\frac{4x^{2}+x-6}{x^{2}+3x+2} - \frac{3x}{x+1} + \frac{5}{x+2}$ Factors of $x^{2}+3x+2$ are $(x+1)(x+2)$. The given expression becomes $=\frac{4x^{2}+x-6}{(x+1)(x+2)} - \frac{3x}{x+1} + \frac{5}{x+2}; x \ne -1,-2;$ Taking LCD, $=\frac{4x^{2}+x-6- 3x(x+2)+5(x+1)}{(x+1)(x+2)}; x \ne -1,-2;$ $=\frac{4x^{2}+x-6- 3x^{2}-6x+5x+5}{(x+1)(x+2)}; x \ne -1,-2;$ Adding like terms we get $=\frac{(4-3)x^{2}+(1-6+5)x+(-6+5)}{(x+1)(x+2)}; x \ne -1,-2;$ $=\frac{x^{2}-1}{(x+1)(x+2)}; x \ne -1,-2;$ $(x^{2}- 1) $ is the difference of squares, the factors are $(x+1)(x-1)$ $[a^{2}-b^{2} = (a+b)(a-b)]$ $=\frac{(x+1)(x-1)}{(x+1)(x+2)}; x \ne -1,-2;$ Divide out common factors. $= \frac{(x-1)}{(x+2)}; x \ne -1,-2;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.