College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 58

Answer

$\frac{x^{2}+40x-25}{(x-4)(x+5)}; x \ne 4,-5;$

Work Step by Step

$\frac{6x^{2}+17x-40}{x^{2}+x-20} + \frac{3}{x-4} - \frac{5x}{x+5}$ Factors of $(x^{2}+x-20) $ are $(x-4)(x+5)$ So, the given expression can be written as $= \frac{6x^{2}+17x-40}{(x-4)(x+5)} + \frac{3}{x-4} - \frac{5x}{x+5}; x \ne 4,-5;$ Taking LCD, $= \frac{6x^{2}+17x-40 + 3(x+5) - 5x(x-4)}{(x-4)(x+5)} ; x \ne 4,-5;$ $= \frac{6x^{2}+17x-40 + 3x+15 - 5x^{2}+20x}{(x-4)(x+5)} ; x \ne 4,-5;$ Add like terms in the numerator. $= \frac{(6-5)x^{2}+(17+3+20)x+(-40 +15)}{(x-4)(x+5)} ; x \ne 4,-5;$ $=\frac{x^{2}+40x-25}{(x-4)(x+5)}; x \ne 4,-5;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.