College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 56

Answer

$\frac{-x^{2}-2x+3}{(x+2)(x-2)}; x \ne 2,-2;$

Work Step by Step

$\frac{x+5}{x^{2}-4} - \frac{x+1}{x-2}$ Factorize $(x^{2}-4) = (x^{2}- 2^{2}) = (x+2)(x-2)$ $[(a^{2}- b^{2})=(a+b)(a-b)]$ $= \frac{x+5}{(x+2)(x-2)} - \frac{x+1}{(x-2)}; x \ne 2,-2;$ Take LCD, $= \frac{x+5-(x+1)(x+2)}{(x+2)(x-2)}; x \ne 2,-2;$ $= \frac{x+5-(x^{2}+2x+x+2)}{(x+2)(x-2)}; x \ne 2,-2;$ $= \frac{x+5-(x^{2}+3x+2)}{(x+2)(x-2)}; x \ne 2,-2;$ $= \frac{x+5-x^{2}-3x-2}{(x+2)(x-2)}; x \ne 2,-2;$ $= \frac{-x^{2}-2x+3}{(x+2)(x-2)}; x \ne 2,-2;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.