College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 74

Answer

$\frac{1}{6}; x \ne 4,-2;$

Work Step by Step

$\frac{1}{x^{2}-2x-8} \div ( \frac{1}{x-4} - \frac{1}{x+2} )$ Factors of $x^{2}-2x-8$ are $(x-4),(x+2)$ $= \frac{1}{(x-4)(x+2)} \div ( \frac{1}{x-4} - \frac{1}{x+2} ); x \ne 4,-2;$ Taking LCD in the Divisor part, $= \frac{1}{(x-4)(x+2)} \div ( \frac{(x+2)-(x-4)}{(x-4)(x+2)} ); x \ne 4,-2;$ $= \frac{1}{(x-4)(x+2)} \div ( \frac{x+2-x+4}{(x-4)(x+2)} ); x \ne 4,-2;$ $= \frac{1}{(x-4)(x+2)} \div ( \frac{6}{(x-4)(x+2)} ); x \ne 4,-2;$ $= \frac{1}{(x-4)(x+2)} \times ( \frac{(x-4)(x+2)}{6} ); x \ne 4,-2;$ Cross out common factors. $= \frac{1}{6}; x \ne 4,-2;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.