College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 69

Answer

$\frac{(x-3)}{(x+2)}; x \ne 3,-1,-2;$

Work Step by Step

$\frac{\frac{1}{x+1}}{\frac{1}{x^{2}-2x-3} + \frac{1}{x-3}}$ Factors of $x^{2}-2x-3$ are $(x-3),(x+1)$ $=\frac{\frac{1}{x+1}}{\frac{1}{(x-3)(x+1)} + \frac{1}{(x-3)}}$ Taking LCD in the Denominator, $=\frac{\frac{1}{x+1}}{\frac{1+x+1}{(x-3)(x+1)}}$ $=\frac{\frac{1}{x+1}}{\frac{x+2}{(x-3)(x+1)}}; x \ne 3,-1,-2;$ $=\frac{1}{x+1} \times \frac{(x-3)(x+1)}{x+2}; x \ne 3,-1,-2;$ $= \frac{(x-3)}{(x+2)}; x \ne 3,-1,-2;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.