College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 68

Answer

$\frac{2(x+2)}{(x+1)} ; x \ne 1,-1,2,-2;$

Work Step by Step

$\frac{\frac{x}{x-2} + 1}{\frac{3}{x^{2}-4}+ 1}$ Simplifying the numerator, $\frac{x}{x-2} + 1 = \frac{x + (x-2)}{(x-2)} = \frac{2x-2}{(x-2)} = \frac{2(x-1)}{(x-2)}$ Simplifying the denominator, $\frac{3}{x^{2}-4}+ 1 = \frac{3+(x^{2}-4)}{(x^{2}-4)} = \frac{(x^{2}-1)}{(x^{2}-4)} = \frac{(x+1)(x-1)}{(x+2)(x-2)}$ [Using $ (a^{2}-b^{2}) = (a+b)(a-b) $] Substituting numerator and denominator, the given expression becomes $\frac{\frac{x}{x-2} + 1}{\frac{3}{x^{2}-4}+ 1} = \frac{\frac{2(x-1)}{(x-2)}}{\frac{(x+1)(x-1)}{(x+2)(x-2)}} ; x \ne 1,-1,2,-2;$ $ = \frac{2(x-1)}{(x-2)} \times \frac{(x+2)(x-2)}{(x+1)(x-1)} ; x \ne 1,-1,2,-2;$ Divide out common factors, $= \frac{2(x+2)}{(x+1)} ; x \ne 1,-1,2,-2;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.