Answer
$\frac{1}{xy}; x\ne 0, -y;$
Work Step by Step
$\frac{\frac{1}{x}+\frac{1}{y}}{x+y}$
$= \frac{\frac{y+x}{xy}}{x+y}; x\ne 0, -y;$
$= \frac{\frac{x+y}{xy}}{x+y} ; x\ne 0, -y;$
$ = \frac{x+y}{xy} \times \frac{1}{x+y } ; x\ne 0, -y;$
$ = \frac{1}{xy}; x\ne 0, -y;$