College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 54

Answer

$\frac{-5x}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1$

Work Step by Step

$\frac{x}{x^{2}-2x-24} - \frac{x}{x^{2}-7x+6}$ Factorizing the denominator $= \frac{x}{(x-6)(x+4)} - \frac{x}{(x-6)(x-1)}; x \ne 6, -4, 1;$ Taking Least Common Denominator, the expression becomes $= \frac{x(x-1)-x(x+4)}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1;$ $= \frac{x^{2}-x-x^{2}-4x}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1$ $= \frac{-5x}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.