Answer
$\frac{-5x}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1$
Work Step by Step
$\frac{x}{x^{2}-2x-24} - \frac{x}{x^{2}-7x+6}$
Factorizing the denominator
$= \frac{x}{(x-6)(x+4)} - \frac{x}{(x-6)(x-1)}; x \ne 6, -4, 1;$
Taking Least Common Denominator, the expression becomes
$= \frac{x(x-1)-x(x+4)}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1;$
$= \frac{x^{2}-x-x^{2}-4x}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1$
$= \frac{-5x}{(x-6)(x+4)(x-1)} ; x \ne 6, -4, 1$