Answer
$\frac{x}{(x+3)} ; x \ne -2,-3;$
Work Step by Step
$\frac{x- \frac{x}{x+3}}{x+2}$
$= \frac{ \frac{x(x+3)-x}{x+3}}{x+2} ; x \ne -2,-3;$
$= \frac{ \frac{x^{2}+3x-x}{x+3}}{x+2} ; x \ne -2,-3;$
$= \frac{ \frac{x^{2}+2x}{x+3}}{x+2} ; x \ne -2,-3;$
$ = \frac{x^{2}+2x}{x+3} \times \frac{1}{x+2} ; x \ne -2,-3;$
$ = \frac{x(x+2)}{x+3} \times \frac{1}{x+2} ; x \ne -2,-3;$
$= \frac{x}{(x+3)} ; x \ne -2,-3;$