College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 55

Answer

$\frac{-x^{2}-2x+1}{(x+1)(x-1)}; x \ne 1,-1;$

Work Step by Step

$\frac{x+3}{x^{2}-1} - \frac{x+2}{x-1}$ $(x^{2}-1)$ is in the form of $(a^{2}-b^{2})$ $(a^{2}-b^{2}) = (a+b)(a-b)$ $(x^{2}-1)=(x^{2}-1^{2})= (x+1)(x-1)$ $= \frac{x+3}{(x+1)(x-1)} - \frac{x+2}{x-1}; x \ne 1,-1;$ Taking LCD, $= \frac{(x+3)-(x+1)(x+2)}{(x+1)(x-1)} ; x \ne 1,-1;$ $= \frac{(x+3)-(x^{2}+3x+2)}{(x+1)(x-1)} ; x \ne 1,-1;$ $= \frac{x+3-x^{2}-3x-2}{(x+1)(x-1)} ; x \ne 1,-1;$ $=\frac{-x^{2}-2x+1}{(x+1)(x-1)}; x \ne 1,-1;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.