College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 87: 67

Answer

$ \frac{-x+14}{7} ; x \ne +2,-2;$

Work Step by Step

$\frac{\frac{3}{x-2} - \frac{4}{x+2}}{\frac{7}{x^{2}-4}}$ Taking Numerator, $\frac{3}{x-2} - \frac{4}{x+2} = \frac{3(x+2)-4(x-2)}{(x-2)(x+2)} ; x \ne +2,-2;$ $= \frac{3x+6-4x+8}{(x-2)(x+2)}; x \ne +2,-2;$ $= \frac{-x+14}{(x-2)(x+2)}; x \ne +2,-2;$ Taking the Denominator, $\frac{7}{x^{2}-4} = \frac{7}{(x-2)(x+2)}; x \ne +2,-2;$ $[(a^{2}-b^{2}) = (a+b)(a-b)]$ The given expression becomes, $\frac{\frac{3}{x-2} - \frac{4}{x+2}}{\frac{7}{x^{2}-4}} = $$\frac{\frac{-x+14}{(x-2)(x+2)}}{\frac{7}{(x-2)(x+2)}}; x \ne +2,-2;$ $= \frac{-x+14}{(x-2)(x+2)} \times \frac{(x-2)(x+2)}{7}; x \ne +2,-2;$ Divide out common factors. $= \frac{-x+14}{7} ; x \ne +2,-2;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.