Answer
$4ab$
Work Step by Step
$Factor$ $the$ $expression$ $completely:$
$(a+b)^2-(a-b)^2$
Square of a Sum Formula: $(A+B)^2 = A^2 + 2AB + B^2$
Square of a Difference Formula: $(A-B)^2 = A^2 - 2AB + B^2$
Simplify both terms by using the Square of a Sum and Square of a difference Product Formulas
$(a^2+2ab+b^2)$ - $(a^2 - 2ab + b^2)$
Distribute the minus sign (-1) to $(a^2 - 2ab + b^2)$
$(a^2 + 2ab + b^2)$ + $(-a^2 + 2ab - b^2)$
Remove the parenthesis and simplify
$a^2 + 2ab + b^2 - a^2 + 2ab - b^2$ = $4ab$