Answer
$ 27 + 54y + 36y^2 + 8y^3$
Work Step by Step
$Multiply$ $the$ $algebraic$ $expressions$ $using$ $a$ $Special$ $Product$ $Formula$ $and$ $simplify:$
$(3+2y)^3$
Use the Cube of a Sum Product Formula: $(A+B)^2 = A^3 + 3A^2B + 3AB^2 + B^3$
$(3+2y)^3$ = $3^3$ + $(3\times 3^2 \times 2y)$ + $(3\times 3 \times (2y)^2)$ + $(2y)^3$
$ = 27 + 54y + 36y^2 + 8y^3$