Answer
$27x^{3}+y^{3}=(3x+y)(9x^{2}-3xy+y^{2})$
Work Step by Step
$27x^{3}+y^{3}$
This is a sum of cubes. The formula for factoring an expression in this form is $A^{3}+B^{3}=(A+B)(A^{2}-AB+B^{2})$.
For this expression, $A^{3}=27x^{3}$ and $B^{3}=y^{3}$.
Factor using the formula:
$27x^{3}+y^{3}=(3x+y)(9x^{2}-3xy+y^{2})$