Answer
$4u^2 + 4uv + v^2$
Work Step by Step
$Multiply$ $the$ $algebraic$ $expressions$ $using$ $a$ $Special$ $Product$ $Formula$ $and$ $simplify:$
$(2u+v)^2$
Use the Square of a Sum Product Formula: $(A+B)^2 = A^2+2AB+B^2$
$(2u+v)^2$ = $(2u)^2 + (2\times2u\times v) + v^2$
$= 4u^2 + 4uv + v^2$