Answer
$ x^3 - 9x^2 + 27x - 27$
Work Step by Step
$Multiply$ $the$ $algebraic$ $expressions$ $using$ $a$ $Special$ $Product$ $Formula$ $and$ $simplify:$
$(x-3)^3$
Use the Cube of a Difference Formula: $(A-B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$
$(x-3)^3$ = $x^3$ - $(3\times x^2 \times 3)$ + $(3\times x \times 3^2)$ - $3^3$
$= x^3 - 9x^2 + 27x - 27$