Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.3 - Algebraic Expressions - 1.3 Exercises - Page 34: 131

Answer

$a)$ $ab=\frac{1}{2}[(a+b)^{2}-(a^{2}+b^{2})]$ $b)$ $(a^{2}+b^{2})^{2}-(a^{2}-b^{2})^{2}=4a^{2}b^{2}$

Work Step by Step

$a)$ $ab=\frac{1}{2}[(a+b)^{2}-(a^{2}+b^{2})]$ Evaluate $(a+b)^{2}$ inside the brackets: $ab=\dfrac{1}{2}\Big[a^{2}+2ab+b^{2}-(a^{2}+b^{2})\Big]$ Simplify the expression inside the brackets: $ab=\dfrac{1}{2}\Big[a^{2}+2ab+b^{2}-a^{2}-b^{2}\Big]$ $ab=\dfrac{1}{2}[2ab]$ Evaluate the product on the right side and the identity will be proved: $ab=ab$ $b)$ $(a^{2}+b^{2})^{2}-(a^{2}-b^{2})^{2}=4a^{2}b^{2}$ Evaluate both powers on the left: $(a^{4}+2a^{2}b^{2}+b^{4})-(a^{4}-2a^{2}b^{2}+b^{4})=4a^{2}b^{2}$ Simplify the left side and the identity will be proved: $a^{4}+2a^{2}b^{2}+b^{4}-a^{4}+2a^{2}b^{2}-b^{4}=4a^{2}b^{2}$ $2a^{2}b^{2}+2a^{2}b^{2}=4a^{2}b^{2}$ $4a^{2}b^{2}=4a^{2}b^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.