Answer
$ y^3 + 6y^2 + 12y + 8$
Work Step by Step
$Multiply$ $the$ $algebraic$ $expressions$ $using$ $a$ $Special$ $Product$ $Formula$ $and$ $simplify:$
$(y+2)^3$
Use the Cube of a Sum Product Formula: $(A+B)^2 = A^3 + 3A^2B + 3AB^2 + B^3$
$(y+2)^3$ = $y^3$ + $(3\times y^2 \times 2)$ + $(3\times y \times 2^2)$ + $2^3$
$= y^3 + 6y^2 + 12y + 8$