Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 10

Answer

Equation of the tangent: $y -1 = 2(x + 1)$ or $y = 2x + 3$ Graph: (The green curve represents the tangent line, and the blue one represents the parametric equation.) -------------

Work Step by Step

1. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$: $\frac{d(sin(t) + sin(2t))}{dt} = cos(t) + 2cos(2t)$ $\frac{d{(cos(t) + cos(2t))}}{dt} = -sin(t) -2sin(2t)$ Therefore: $\frac{dy}{dx} = \frac{cos(t)+2cos(2t)}{-sin(t)-2sin(2t)}$ 2. At which point $x = -1$ and $y = 1$? $-1 = cos(t) + cos(2t)$ $-1 = cos(t) + (cos^2(t) - sin^2(t))$ $-1 = cos(t) + cos^2(t) - (1 - cos^2(t) )$ $-1 = cos(t) + 2cos^2(t) - 1 $ $0 = cos(t) + 2cos^2(t)$ $0 = cos(t)(1 + 2cos(t))$ So: $cos(t) = 0$ or $1 + 2cos(t) = 0$ Possible values (between $-\pi$ and $\pi$): $cos(t) = 0 \longrightarrow t = \frac {\pi} 2 \space and \space t =- \frac{\pi} 2$ $1 + 2cos(t) = 0$ $cos(t) = -\frac{1}{2} \longrightarrow t = \frac{2\pi}{3}$ and $t = -\frac{2\pi} 3$ Now, check these for values on the $y = sin(t) + sin(2t)$ equation: $y = sin(\frac{\pi}{2}) + sin(2 \frac {\pi} 2) = 1 + 0 = 1$: $y = 1$ $y = sin(\frac{-\pi}{2}) + sin(2 (-\frac {\pi} 2)) = -1 + 0 = -1$: $y \neq 1$ $y = sin(\frac{2\pi}{3}) + sin(2 (\frac {2\pi} 3)) = \frac{\sqrt 3}{2} - \frac{\sqrt 3}{2} = 0$: $y \neq 1$ $y = sin(-\frac{2\pi}{3}) + sin(2 (-\frac {2\pi} 3)) = - \frac{\sqrt 3}{2} + \frac{\sqrt 3}{2} = 0$: $y \neq 1$ - The only answer that satisfies both equations is $t = \frac {\pi} 2$ 3. Calculate $\frac{dy}{dx}$ for t = $\frac {\pi} 2$: $\frac{cos(\frac {\pi} 2) + 2cos(2(\frac {\pi} 2))}{-sin(\frac {\pi} 2) -2sin(2(\frac {\pi} 2))} = \frac {0 + 2(-1)}{-(1) - (2(0))} = 2$ 4. Determine the tangent equation: $y-y_0 = \frac{dy}{dx}(x-x_0)$ $y - 1 = 2 (x - (-1))$ $y -1 = 2(x + 1)$ or $y = 2x + 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.