Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 33

Answer

$A=3-e$

Work Step by Step

The values of t when y=0 are found by $y=0$ $t-t^{2}=0$ $t(1-t)=0$ $t=0$ and $t=1.$ For $t\in[0,1]$, y(t) is positive. We find $A=\displaystyle \int_{0}^{1}y(t)[x'(t)dt]=\int_{0}^{1}(t-t^{2})e^{t}dt$ $=\displaystyle \int_{0}^{1}te^{t}dt-\int_{0}^{1}t^{2}e^{t}dt$ From reference page 10, use the formula $97.\displaystyle \quad \int u^{n}a^{au}du=\frac{1}{a}u^{n}e^{au}-\frac{n}{a}\int u^{n-1}e^{au}du$ $\displaystyle \int_{0}^{1}te^{t}dt=te^{t}|_{0}^{1}-e^{t}|_{0}^{1},$ $\displaystyle \int_{0}^{1}t^{2}e^{t}dt=t^{2}e^{t}|_{0}^{1}-2\int_{0}^{1}te^{t}dt=t^{2}e^{t}|_{0}^{1}-2(te^{t}|_{0}^{1}-e^{t}|_{0}^{1})$ $A= (e-0)-(e-1)-\{(e-0)-2[(e-0)-(e-1)]\}$ $= 1-(e-2)$ $=3-e$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.