Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 15

Answer

This curve is concave up when $\frac{\pi}{2}\lt t \lt \frac{3\pi}{2}$

Work Step by Step

$x = 2sint,$ $y = 3cos t, 0 \lt t \lt 2 \pi$. Step 1 $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-3sint}{2cost}=-\frac{3}{2} tan t$ Step 2 Now, find the 2nd derivative: $\frac{d^{2}y}{dx^{2}}= \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}= \frac{-\frac{3}{2}sec^{2}t}{2cost}=-\frac{3}{4}sec^{3}t$ This curve is concave up when $sec^{3}t \lt0$ If $sec^{3}t \lt 0 $ then $cos t \lt 0$ $\frac{\pi}{2}\lt t \lt \frac{3\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.