Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 32

Answer

$A=\displaystyle \frac{8\sqrt{2}}{15}$

Work Step by Step

The y axis has equation $x=0.$ The curve intersects the y-axis when $x=0$ $t^{2}-2t=0$ $t(t-2)=0$ ... when $t=0$ and $t=2.$ For t=0$, y=0$, and for $t=2 ,\ y=\sqrt{2}$. On the interval $y\in[0,\sqrt 2], (t\in[0,2])$, x(t) is negative, so we find $A=\displaystyle \int_{0}^{\sqrt{2}}(-x(t))dy\qquad \left[\begin{array}{lll} \frac{dy}{dt}=\frac{1}{2\sqrt{t}} & & y=0\Rightarrow t=0\\ dy=\frac{dt}{2\sqrt{t}} & & y=\sqrt{2}\Rightarrow t=2 \end{array}\right]$ $=-\displaystyle \int_{0}^{2}(t^{2}-2t)(\frac{1}{2\sqrt{t}}dt)$ $=-\displaystyle \int_{0}^{2}(\frac{1}{2}t^{3/2}-t^{1/2})dt$ $=-[\displaystyle \frac{1}{5}t^{5/2}-\frac{2}{3}t^{3/2}]_{0}^{2}$ $=-(\displaystyle \frac{1}{5}\cdot 2^{5/2}-\frac{2}{3}\cdot 2^{3/2})$ $=-\displaystyle \frac{\sqrt{2}}{15}(3\cdot 4-5\cdot 4)$ $=\displaystyle \frac{8\sqrt{2}}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.