Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 19

Answer

There are horizontal tangents at : $(\frac 1 2, -1)$ and at $(-\frac 1 2, 1)$

Work Step by Step

1. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$: $\frac{dy}{dt} = \frac{d(cos(3\theta))}{dt} = -3sin(3\theta)$ $\frac{dx}{dt} = \frac{d(cos(\theta))}{dt} = -sin(\theta)$ Therefore: $\frac{dx}{dy} = \frac{-3sin(3\theta)}{-sin(\theta)} = \frac{3sin(3\theta)}{sin(\theta)}$ 2. There will be a horizontal tangent when $3sin(3\theta) = 0$ and $sin(\theta) \neq 0$: $3sin(3\theta) = 0$ $sin(3\theta) = 0$ ** Notice: $sin(t) = 0;$ So: $t = 0, t = \pi \space , \space t = 2\pi, \space t = 3\pi$ . (For values between 0 and $3\pi$) If $3 \theta$ is equal to $t$: $3\theta = 0 \longrightarrow \theta = 0$ $3\theta = \pi \longrightarrow \theta = \frac {\pi} 3$ $3\theta = 2\pi \longrightarrow \theta = \frac {2\pi} 3$ $3\theta = 3\pi \longrightarrow \theta = \pi$ - Check if $sin(\theta) \neq 0 $ $sin(0) = 0$ - Invalid. $sin(\frac {\pi} 3 ) = \frac {\sqrt 3} 2$ $sin(\frac {2\pi} 3 ) = \frac {\sqrt 3} 2$ $sin(\pi) = 0$ - Invalid Therefore, the curve has horizontal tangent at $\theta = \frac {\pi} 3$ and at $\theta = \frac {2\pi} 3$ 3. There will be a vertical tangent when $sin(\theta) = 0$ and $3sin(3\theta) \neq 0$: $sin(\theta) = 0;$ So: $\theta = 0, \theta = \pi \space , \space \theta = 2\pi, \space \theta = 3\pi$ . (For values between 0 and $3\pi$) Check if $3sin(3\theta) \neq 0$ $3sin(3(0)) = 0$ $3sin(3(\pi)) = 0$ $3sin(3(2\pi)) = 0$ $3sin(3(3\pi)) = 0$ Therefore, the curve doesn't have vertical tangents. 4. Find the points: $\theta = \frac {\pi} 3$ $x = cos(\frac {\pi} 3) = \frac{1}{2}$ $y = cos(3(\frac {\pi} 3)) = cos(\pi) = -1$ $\theta = \frac {2\pi} 3$ $x = cos(\frac {2\pi} 3) = -\frac{1}{2}$ $y = cos(3(\frac {2\pi} 3)) = cos(2\pi) = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.