Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 16

Answer

$\frac{dy}{dx} = \frac 1 4 sec(t)$ $\frac{d^2y}{dx^2}= -\frac {1}{16} sec^3(t)$ The curve is concave upward for these values of t : $\frac{\pi}{2} \lt t \lt \pi$

Work Step by Step

1. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$ $\frac{dy}{dt} = \frac{d(cos(t))}{dt} = -sin(t)$ $\frac{dx}{dt} = \frac{d(cos(2t))}{dt} = -2sin(2t)$ Therefore: $\frac{dy}{dx} = \frac{-sin(t)}{-2sin(2t)} = \frac{sin(t)}{2sin(2t)}$ ** $sin(2t) = 2sin(t)cos(t)$ $\frac{dy}{dx} = \frac{sin(t)}{2(2sin(t)cos(t))} = \frac 1 {4cos(t)} = \frac 1 4 sec(t)$ 2. Calculate $\frac{d^2y}{dx^2}$: $\frac{d(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{\frac 1 4 (tan(t)sec(t))}{-2sin(2t)} = \frac{\frac 1 4 \frac{sin(t)}{cos^2(t)}}{-2(2sin(t)cos(t))} = -\frac{1}{16} \frac{1}{cos^3(t)} = -\frac {1}{16} sec^3(t)$ 3. Determine for which values the curve is concave upward: - That will happen when $\frac{d^2y}{dx^2} \lt 0$: $-\frac {1}{16} sec^3(t) \lt 0$ $sec^3(t) \lt 0$ $sec(t) \lt 0$ $\frac{1}{cos(t)} \lt 0$ - Since $1$ is always going to be positive, then $cos(t)$ will determine if the result is positive or negative. $cos(t) \lt 0$ Therefore: $\frac{\pi}{2} \lt t \lt \frac{3\pi}{2}$, but, since t is between $0$ and $\pi$: $\frac{\pi}{2} \lt t \lt \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.