Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 26

Answer

$y = - \sqrt {15}(x+ 2)$ and $y = \sqrt {15}(x+ 2)$ --------------------

Work Step by Step

1. Identify the point where the curve cross it self. According to the graph: $(-2,0)$ 2. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$ $\frac{dy}{dt} = \frac{d(sin(t) + 2sin(2t))}{dt} = cos(t) + 4cos(2t)$ $\frac{dx}{dt} = \frac{d(cos(t) + 2cos(2t))}{dt} = -sin(t) - 4sin(2t)$ Thus, $\frac{dy}{dx} = \frac{cos(t) + 4cos(2t)}{-sin(t) - 4sin(2t)}$ 3. Identify both $t$ values at (-2,0): $-2 = cos(t) + 2cos(2t)$ $0 = sin(t) + 2sin(2t)$ $0 = sin(t) + 2(2sin(t)cos(t))$ $0 = sin(t) (1 + 4cos(t))$ $sin(t) = 0$; $t = 0 \space or \space t = \pi$ Check if $x$ = -2 $x = cos(0) + 2cos(2*0) = 1 + 2*1 = 3 \neq -2$ $x = cos(\pi) + 2cos(2\pi) = -1 + 2*(1) = 1 \neq -2$ $1 + 4cos(t) = 0$ $cos(t) = - \frac{1}{4}$ $t =± arccos(-\frac{1}{4})$ Check if $x$ = -2: $x = cos(arccos(-\frac{1}{4})) +2cos(2*(arccos(-\frac{1}{4}))) = -2$ $x = cos(-arccos(-\frac{1}{4})) +2cos(2*(-arccos(-\frac{1}{4}))) = -2$ 4. Calculate $\frac{dy}{dx}$ for these values of $t$: $\frac{dy}{dx} = \frac{cos(arccos(-\frac{1}{4})) + 4cos(2(arccos(-\frac{1}{4})))}{-sin(arccos(-\frac{1}{4}))-4sin(2(arccos(-\frac{1}{4})))} \approx -3.873 \approx - \sqrt {15}$ $\frac{dy}{dx} = \frac{cos(-arccos(-\frac{1}{4})) + 4cos(2(-arccos(-\frac{1}{4})))}{-sin(-arccos(-\frac{1}{4}))-4sin(2(-arccos(-\frac{1}{4})))} \approx 3.873 \approx \sqrt {15}$ 5. Write the equations: $y = - \sqrt {15}(x+ 2)$ and $y = \sqrt {15}(x+ 2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.