Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 11

Answer

The curve is concave up when $t\lt0$.

Work Step by Step

$x=t^{2}+1$, $y=t^{2}+t$ Step 1 Find the derivatives $\frac{dx}{dt}=2t$ $\frac{dy}{dt}=2t+1$ Then we can find $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2t+1}{2t}= 1+\frac{1}{2t}$ Step 2 Then we can find $\frac{d^{2}y}{dx^{2}}=\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}=\frac{-1/(2t^{2})}{2t}=-\frac{1}{4t^{3}}$ The curve is concave up when $\frac{d^{2}y}{dx^{2}} \gt 0$, when $t \lt 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.