Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 25

Answer

Tangents: $1 \space and \space -1$ Their equations: $y = x$ and $y = -x$ ------------

Work Step by Step

1. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$ $\frac{dy}{dt} = \frac{d(sin(t)cos(t))}{dt} = (sin(t))'(cos(t)) + (sin(t))(cos(t))'$ $\frac{dy}{dt} = cos(t)cos(t) + sin(t) (-sin(t))$ $\frac{dy}{dt} = cos^2(t) - sin^2(t) = cos(2t)$ $\frac{dx}{dt} = \frac{d(cos(t))}{dt} = -sin(t)$ Thus, $\frac{dy}{dx} = \frac{cos(2t)}{-sin(t)}$ 2. Find the tangents at $(0,0)$ $x = cos(t)$ $0 = cos(t)$ Thus, $t = \frac{\pi}{2}$ or $t = \frac{3 \pi}{2}$ - If cos(t) is equal to 0, $y$ is also equal to 0. (y = sin(t) * 0 = 0) $\frac{dy}{dx} = \frac{cos(2(\frac{\pi}{2}))}{-sin(\frac{\pi}{2})} = \frac{cos(\pi)}{-1} = \frac 1 {-1} = -1$ $\frac{dy}{dx} = \frac{cos(2(\frac{3\pi}{2}))}{-sin(\frac{3\pi}{2})} = \frac{cos(3\pi)}{-(-1)} = \frac 1 {1} = 1$ 3. Find their equations: $y - y_0 = (1)(x - x_0)$ $y = (x)$ $y = x$ and $y - y_0 = (-1)(x - x_0)$ $y = -1(x)$ $y = -x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.