Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 2

Answer

$$\frac{dy}{dx} = \sqrt {t^3}e^{-t}(t - \frac{1}{2})$$

Work Step by Step

We will need to use the following formula: $$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$ This formula lets us calculate ${\frac{dy}{dt}}$ and ${\frac{dx}{dt}}$ individually, then take their quotient to obtain $\frac{dy}{dx}$. $$\frac{dy}{dt} = \frac{d}{dt}(\sqrt t e^{-t}) = \frac{e^{-t}}{2\sqrt t} - \sqrt t e^{-t}$$$$\frac{dx}{dt} = \frac{d}{dt}(\frac{1}{t}) = -\frac{1}{t^2}$$ $$\frac{dy}{dx} = \frac{\frac{e^{-t}}{2\sqrt t} - \sqrt t e^{-t}}{-\frac{1}{t^2}} = \sqrt {t^3}e^{-t}(t - \frac{1}{2})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.