Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 12

Answer

For the interval (0, 1), the curve is concave up.

Work Step by Step

$x=t^{3}+1$, $y=t^{2}-t$ Step 1 Find $\frac{dy}{dx}$ $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{2t-1}{3t^{2}}=\frac{2}{3t}- \frac{1}{3t^{2}}= \frac{2}{3}t^{-1}-\frac{1}{3}t^{-2}$ Step 2 Find the 2nd derivative $\frac{d^{2}y}{dx^{2}}=\frac{\frac{d}{dt}(\frac{2}{3}t^{-1}-\frac{1}{3}t^{-2})}{3t^{2}}=\frac{x}{y}=\frac{-\frac{2}{3}t^{-2}+\frac{2}{3}t^{-3}}{3t^{2}} \frac{3t^{3}}{3t^{3}}$ $=\frac{2-2t}{9t^{5}}$ Step 3 Find where the second derivative is 0 $2-2t=0$ $2(1-t)=0$ $t=1$ The 2nd derivative is undefined when t=0. Interval $(-\infty, 0), t=-1 $ $\frac{2-2t}{9t^{5}}=\frac{2-2(-1)}{9(-1)^{5}}=-\frac{4}{9} \lt 0$- concvace down Interval $(0,1), t=0,5$ $\frac{2-2(0,5)}{9(0,5)^{5}}= 3.6 \gt 0$- concave up Interval $(1, \infty), t=2$ $\frac{2-2(2)}{9(2)^{5}}=-\frac{1}{144} \lt 0$- concave down
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.