Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 17

Answer

Horizontal : $(0,-3)$ Vertical : $(2,-2)$ and $(-2,-2)$

Work Step by Step

1. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$: $\frac{dy}{dt} = \frac{d(t^2 - 3)}{dt} = 2t$ $\frac{dx}{dt} = \frac{d(t^3 - 3t)}{dt} = 3t^2 - 3$ 2. The tangent is horizontal when $\frac{dy}{dt} = 0$ $2t = 0$ $\frac {2t} 2 = \frac 0 2$ $t = 0$ Cartesian coordinates: $x = (0)^3-3(0) = 0;y = (0)^2-3 = -3$ 3. The tangent is vertical when $\frac{dx}{dt} \approx 0$: $3t^2 -3 =0$ $3(t^2 - 1) = 0$ $\frac {3(t^2-1)}{3} = \frac 0 3$ $t^2 - 1 = 0$ $t^2 = 1$ Therefore, $t \approx 1$ or $t \approx -1$. Cartesian coordinates: $x = (1)^3-3(1) = -2;y = (1)^2-3 = -2$ Cartesian coordinates: $x = (-1)^3-3(-1) = 2;y = (-1)^2-3 = -2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.