Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 22

Answer

Estimated coordinates: Leftmost point: $(-1.2, 1.2)$ Lowest point: $(1.5, -0.5)$ Exact coordinates: Leftmost point: $(-1.19, 1.19)$ Lowest point: $(1.42, -0.47)$

Work Step by Step

1. Graph the equation and estimate the coordinates of the leftmost and the lowest point on that curve. - Insert the parametric equation and then zoom in the leftmost and in the lowest point, and take note of the coordinates. - Mine were $(-1.2,1.2)$ and $(1.5,-0.5)$, respectively. 2. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$: $\frac{dy}{dt} = \frac{d(t + t^4)}{dt} = 1 + 4t^3$ $\frac{dx}{dt} = \frac{d(t^4-2t)}{dt} = 4t^3 - 2$ Thus: $\frac{dy}{dx} = \frac{1 + 4t^3}{4t^3 - 2}$ The leftmost point is at a vertical tangent, therefore, $4t^3 - 2= 0$ and $1 + 4t^3 \neq 0$ $4t^3 - 2= 0$ $4t^3 = 2$ $t^3 = \frac 2 4 = \frac 1 2$ $t = \sqrt [3] {\frac 1 2}$ - Check if $1 + 4t^3 \neq 0$: $1 + 4(\sqrt [3] {\frac 1 2})^3 \neq 0 $ $1 + 4(\frac 1 2) \neq 0$ $3 \neq 0$ - It is valid. The lowest point is at a horizontal tangent, therefore, $1 + 4t^3 = 0$ and $4t^3 -2 \neq 0$ $1 + 4t^3 = 0$ $4t^3 = -1$ $t^3 = - \frac{1}{4}$ $t =- \sqrt [3] {\frac 1 4}$ - Check if: $4t^3 - 2 \neq 0 $ $4(\sqrt [3] {\frac 1 4})^3 -2 \neq 0$ $1 - 2 \neq 0 $ $-1 \neq 0$ - It is also valid. 3. Find the coordinates for: $t = \sqrt [3] {\frac 1 2}$ $x = (\sqrt [3] {\frac 1 2})^4 - 2(\sqrt [3] {\frac 1 2}) = -1.19$ $y = \sqrt [3] {\frac 1 2} + (\sqrt [3] {\frac 1 2})^4 = 1.19$ 4. Find the coordinates for: $t = \sqrt [3] {\frac 1 4}$ $x = (-\sqrt [3] {\frac 1 4})^4 - 2(-\sqrt [3] {\frac 1 4}) = 1.42$ $y = -\sqrt [3] {\frac 1 4} + (-\sqrt [3] {\frac 1 4})^4 = -0.47$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.