Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 30

Answer

$y=x-1$ and $y=-2x+11$ are tangents to the curve that pass through (4,3)

Work Step by Step

$x=3t^{2}+1$, $\displaystyle \frac{dx}{dt}=6t$, $y=2t^{3}+1,\ \displaystyle \frac{dy}{dt}=6t^{2}$ $\displaystyle \frac{dy}{dx}=\frac{6t^{2}}{6t}=t$. At point ($x_{1},y_{1}$), the tangent line has equation $y-y_{1} =t(x-x_{1})$ ... representing $x_{1}$ and $y_{1}$ with t: $y-(2t^{3}+1)=t[x-(3t^{2}+1)]$. A tangent line passing through the point (4,3) satisfies $3-(2t^{3}+1)=t[4-(3t^{2}+1)]$ $-2t^{3}+2=4t-3t^{3}-t$ $t^{3}-3t+2=0$ $t^{3}-t-2t+2=0$ $t(t^{2}-1)-2(t-1)=0$ $(t-1)(t(t+1)-2)=0$ $(t-1)(t^{2}+t-2)=0$ $(t-1)(t-1)(t+2)=0$ $(t-1)^{2}(t+2)=0$ $t=1$ or $t=-2$. When $t=1$ the point is $(3(1^{2})+1,2(1^{3})+1)= (4,3)$ So one equation is the tangent to the curve at (4,3): $y-(2\cdot 1+1)=(1)[x-(3(1)+1)]$. $y-3=x-4$, $y=x-1$ When $t=-2$ the point is $(3(-2)^{2}+1, 2(-2)^{3}+1)=(-11,-15)$ So, another is the tangent in the point $(-11,-15)$: $y-(2\cdot(-8)+1)=(-2)[x-(3(4)+1)]$. $y-15=-2x+26$ $y=-2x+11$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.